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Abstract. We present a detailed discussion of the evolution of a statistical ensemble of quantum mechanical
systems coupled weakly to a bath. The Hilbert space of the full system is given by the tensor product
between the Hilbert spaces associated with the bath and the bathed system. The statistical states of the
ensemble are described in terms of density matrices. Supposing the bath to be held at some – not necessarily
thermal – statistical equilibrium and tracing over the bath degrees of freedom, we obtain reduced density
matrices defining the statistical states of the bathed system. The master equations describing the evolution
of these reduced density matrices are derived under the most general conditions. On time scales that are
large with respect to the bath correlation time τ corr

B and with respect to the reciprocal transition frequencies
of the bathed system, the resulting evolution of the reduced density matrix of the bathed system is of
Markovian type. The detailed balance relations valid for a thermal equilibrium of the bath are derived
and the conditions for the validity of the fluctuation-dissipation theorem are given. Based on the general
approach, we investigate the non-linear response of the bathed subsystem to a time-periodic perturbation.
Summing the perturbation series we obtain the coherences and the populations for arbitrary strengths of
the perturbation.

PACS. 05.30.-d Quantum statistical mechanics – 33.35.+r Electron resonance and relaxation – 33.25.+k
Nuclear resonance and relaxation

1 Introduction

The evolution of open quantum systems weakly coupled
to a bath is a fundamental problem of statistical physics
that has been addressed by many authors since the early
beginnings of quantum mechanics. The concept of density
matrices introduced by von Neumann and Dirac [1,2] in
the early thirties of the last century has been extremely
useful for the theoretical formulation of the problem. The
path-integral method [3–5] offers a practical scheme for
the calculation of density matrices describing such subsys-
tems [6,7]. Considering the particular problem of nuclear-
spin relaxation in a solid, Bloch, Wangsness, and Redfield
have developed a phenomenological approach, in which
they derive the Markovian master equation describing the
coarse-grained evolution of the reduced density matrix as-
sociated with the nuclear spin subsystem [8–10]. Similar
formulations have been worked out later on to describe
dissipation phenomena in quantum optics [11,12]. Linear-
response theory has been invoked by Deutsch et al. [13] to
describe the time evolution of macroscopic quantities. Al-
lowing to deal with a large variety of physical situations,
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the Bloch-Wangsness-Redfield approach is of great inter-
est. In particular, it provides access to many kinds of rate
processes [14], and it can also be applied to the interaction
of photons with atoms, clusters or solids [15–17]. The ex-
tension of the Bloch-Wangsness-Redfield theory to short
times has received a lot of attention in the more recent
literature [18–21].

The coarse-grained density matrix of the bathed sub-
system, which is the central quantity in the above-
mentioned approaches, satisfies the von Neumann condi-
tions of hermiticity and trace preservation, but not that
of positivity. Even though, strictly speaking, it is not a
true density matrix, it allows a correct description of the
coarse-grained evolution of the observables characterizing
the considered subsystem. Recently, it was shown [22–31]
that it is possible to describe the evolution of the reduced
density matrix in such a way that the latter obeys the
von Neumann conditions at all times. In the limit of weak
interaction and on correspondingly long time scales, the
evolution of the density matrix describing the quantum
mechanical subsystem becomes strictly Markovian, lead-
ing to a quantum dynamical semigroup [23,25–31]. This
formulation was generalized later on. In fact, a Markovian
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evolution of an open quantum system weakly interact-
ing with a bath subsystem is expected on time-scales for
which memory effects can be neglected [30,31]. The most
general form of a generator corresponding to a Marko-
vian evolution of the density matrix of the subsystem has
been given by Lindblad [24]. The results presented in ref-
erences [22–31] are very important, since they ensure that
a Markovian evolution of a finite subsystem is compatible
with a quantum statistical description of the full system.
They also offer a more profound justification of the phys-
ical hypotheses underlying the Bloch-Wangsness-Redfield
approach. For practical applications, however, both ap-
proaches can be considered to be equivalent.

In the present paper, we revisit the Bloch-Wangsness-
Redfield formalism. Our principal goal is to obtain a
general and transparent quantum-mechanical description
of the evolution of two weakly interacting subsystems,
where one of the subsystems acts as a bath. The physical
properties of both subsystems are described by closed sub-
spaces of their respective Hilbert spaces. Considering sub-
systems associated with different particles, we exclude mu-
tual quantum-statistical correlations [32]. In accordance
with the standard experimental situation, the subsystem
acting as a bath is maintained close to some equilibrium
by its interaction with the further statistical environment.
In order to be as general as possible, we will not specify the
nature of the equilibrium of the bath from the very begin-
ning. Thus, our present derivation of the master equations
does not rely on the hypothesis of a bath at “thermal”
equilibrium. This generalization is e.g. needed to access
physical situations, where the equilibrium state of the bath
subsystem is controlled by pumping with an intense exter-
nal laser source. Obviously, the maintenance of the bath
at equilibrium is only possible if the bath system interacts
with a further statistical environment. The residual inter-
action is accounted for by introducing a finite correlation
time τcorr

B of the bath subsystem. This phenomenological
parameter allows us to get rid of the further environment
and to limit the quantum-mechanical description of the
evolution to rather small systems. It is of course under-
stood that the sizes of the considered subsystems must be
carefully chosen to catch the relevant dynamics.

Our paper is subdivided into three principal parts. In
Section 2 we derive the master equations, which govern
the evolution of a subsystem A that interacts weakly with
a bath subsystem B. We first introduce the corresponding
Hilbert spaces and Hamiltonians as well as the density
matrices in the Schrödinger picture (Sect. 2.1). Tracing
the subspace associated with the subsystem B, we ob-
tain an effective reduced density matrix that describes
the statistical state of the bathed subsystem A. In Sec-
tion 2.2 we then switch to the interaction picture, which
allows us to treat the interaction between both subsys-
tems in an efficient manner. The resulting evolution of
the reduced density matrix associated with the subsystem
A is presented in Section 2.3, where we also introduce
the correlation functions characterizing the bath subsys-
tem B. The last subsections of Section 2 deal with the
master equations, which govern the “coarse-grained” evo-

lution of the reduced density matrix. The coarse graining
procedure and the underlying hypotheses are presented in
Section 2.4. In Section 2.5 we analyze the resulting master
equations and we derive the Fermi’s Golden Rule relations.
The evolution of the populations and of the coherences in
the bathed subsystem A is investigated in Section 2.6,
where we consider also the particular situation of a bath
at thermal equilibrium.

The following Section 3 focuses on the relaxation of
the bathed subsystem. We first discuss the evolution of
the expectation values of observables of the bathed sub-
system A. As a particular example we then consider the
dissipation of energy. We further derive the validity con-
ditions for the fluctuation-dissipation theorem as well as
the corresponding relations for a bath with a positive tem-
perature. Starting from the Fourier transforms of the cor-
relation functions, we then verify the Kramers-Kronig re-
lations, which relate the real and the imaginary parts of
the susceptibility functions describing either the retarded
or the advanced response of the bath subsystem to the
perturbation caused by the bathed subsystem (Sect. 4).

Most experimental studies deal with the response of
a bathed system to some external perturbation. This sit-
uation is addressed in Section 5, where we treat the re-
sponse to a time-periodic external perturbation to any or-
der in the perturbation. Our final conclusions are drawn
in Section 6.

2 Quantum mechanical description
of a composite system

2.1 Hilbert spaces and density matrices

We consider an isolated system consisting of two subsys-
tems A and B described by the corresponding Hilbert
spaces HA and HB. The Hilbert space H of the complete
system is given by the tensor product H = HA ⊗HB. The
dynamics of the system is driven by the time-independent
Hamiltonian

H = H0 +Hint, (1)

where the first term H0 describes the free evolution of
the subsystems A and B, and where Hint represents the
interaction between both subsystems. We thus may write

H0 = HA ⊗ 1B + 1A ⊗HB ,

where the two terms on the right-hand side determine the
free evolution of the respective subsystems. The opera-
tors 1A and 1B denote the identity operators in the Hilbert
spaces HA and HB.

The statistical state of the full system at time t is
described by the density matrix ρ(t). Let us recall that
ρ(t) is a positive self-adjoint operator with unit trace, i.e.,
we have

ρ(t) = ρ(t)†, Tr (ρ(t)) = 1, ρ(t)2 ≤ ρ(t). (2)



F.A. Reuse et al.: Dissipative evolution of quantum statistical ensembles 575

An observable of the subsystem A is associated with a
self-adjoint operator of the form OA ⊗ 1B. Choosing or-
thonormal basis sets | a〉, a ∈ A in HA and | b〉, b ∈ B in
HB, we can write its expectation value

〈 OA ⊗ 1B 〉 = Tr (ρ (OA ⊗ 1B))

as

〈 OA ⊗ 1B 〉 =
∑

a,a′∈A
(ρA)aa′ 〈a′ |OA| a〉,

where the matrix

(ρA)aa′ =
∑
b∈B

〈b | ⊗ 〈a |ρ| a′〉 ⊗ | b〉, (3)

satisfying the relations (2), is the reduced density matrix
describing the statistical state of the subsystem A. In the
following, the partial-trace operation in equation (3) will
be abbreviated as

ρA = TrB (ρ) . (4)

Similarly, the statistical state of the subsystem B will be
written ρB = TrA (ρ). The density matrix of the full sys-
tem A+B can be decomposed as

ρ(t) = ρA(t) ⊗ ρB(t) + ηAB(t),

where the first term ρA(t)⊗ρB(t) has the properties (2) of
a density matrix. The residual self-adjoint operator ηAB(t)
describes the statistical correlation between the subsys-
tems. It satisfies the relations

TrB (ηAB(t)) = 0, TrA (ηAB(t)) = 0.

For vanishing correlation ηAB(t) = 0, the expectation
value of an operator of the form OA ⊗OB becomes

Tr (ρ (OA ⊗OB)) = 〈 OA 〉 〈 OB 〉 .

2.2 Interaction picture

To describe the evolution of the subsystem A interacting
with a subsystem B, it is convenient to adopt the inter-
action picture. The evolution of the full system in the
Schrödinger picture is determined by the density matrix

ρ(t) = e−
i
�

Ht ρ(0) e
i
�

Ht,

where ρ(0) represents the density matrix at time t = 0.
The corresponding density matrix in the interaction pic-
ture reads

ρI(t) = e
i
�

H0t ρ(t) e−
i
�

H0t.

Its evolution is governed by

dρI

dt
=
i

�

[
ρI(t) , HI

int(t)
]

(5)

with

HI
int(t) = e

i
�

H0t Hint e
− i

�
H0t.

The partial trace operation TrB commutes with the
operation corresponding to the change of picture. Thus,
using equation (4), we obtain

TrB
(
ρI(t)

)
= e

i
�

HAt TrB (ρ(t)) e−
i
�

HAt

= (ρA(t))I .

Defining ρI
A(t) ≡ (ρA(t))I , we get

ρI
A(t) = TrB

(
ρI(t)

)
,

which is the analog of equation (4) in the interaction pic-
ture. An observable characterized in the Schrödinger pic-
ture by an operator O(t) has the expectation value

〈 O(t) 〉 = Tr
(
ρI(t) OI(t)

)
with

OI(t) = e
i
�

H0t O(t) e−
i
�

H0t.

2.3 Evolution of the subsystem A weakly coupled
to a bath B

The interaction term in the Hamiltonian (1) can always
be written

Hint =
∑

α

Aα ⊗Bα,

where Aα and Bα are adequately chosen self-adjoint op-
erators acting in the Hilbert spaces HA and HB, respec-
tively. In the interaction picture it reads

HI
int(t) =

∑
α

AI
α(t) ⊗BI

α(t)

with

AI
α(t) = e

i
�

HAtAαe
− i

�
HAt

and

BI
α(t) = e

i
�

HBtBαe
− i

�
HBt.

In the following we restrict our discussion to the case of
weakly coupled subsystems A and B. We further suppose
that both subsystems are weakly correlated. For vanishing
interaction the statistical equilibrium of the subsystem B
is described by a density matrix ρ0

B, which commutes with
the Hamiltonian HB. The statistical state of the subsys-
tem B is perturbed by the interaction with the subsystem
A. The dynamical response of the subsystem B to this per-
turbation is characterized by the correlation time τcorr

B . In
order to catch the dissipative part of the evolution of the
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subsystem A, we have to describe the evolution of the den-
sity matrix ρI

A(t) over a time interval ∆t � τcorr
B keeping

at least the terms of second order in the interaction.
Under the above assumptions, the subsystem B takes

the role of a bath with a finite memory time τcorr
B . The

interaction between the subsystems A and B leads to a
loss of memory of the subsystem A over large times, so
that the evolution of the statistical state of the full system
at time t becomes independent of the statistical states
ρ(t′), t′ < t00 � t in the remote past. The statistical state
at time t00 being irrelevant for the evolution at time t, we
may assume without loss of generality that the subsystems
A and B were uncorrelated at time t00, i.e., we set

ηAB(t00) = 0. (6)

According to our above hypotheses, the statistical
state of the subsystem B is described by the density ma-
trix

ρB(t) = ρ0
B + δρB(t) with

[
ρ0

B , HB

]
= 0.

The term δρB(t) describes the deviations around the equi-
librium statistical state ρ0

B. These deviations being caused
by the interaction with the subsystem A, we have to es-
tablish the relation between δρB(t) and the evolution of
the statistical state of the subsystem A during a time in-
terval t0 ≤ t < t0 +∆t. This is done in Appendix A. The
first-order terms are cancelled out after the substitutions

HA +
∑
α

Aαb
0
α → HA

Bα − b0α1B → Bα

(7)

with

b0α = Tr
(
ρ0

BB
I
α(t)

)
= Tr

(
ρ0

BBα

)
.

Accordingly, the first-order contributions may be taken
into account by including a term representing a time-
independent “external field” in the Hamiltonian HA. For
example, in the case of the interaction of nuclei with con-
duction electrons this term would correspond to the so-
called Knight shift. In the following we will assume that
the replacements (7) have been performed. Then we get
(see Appendix A)

ρI
A(t) = ρI

A(t0) +
(
i

�

)2

×
∫ t

t0

dt′
∫ t′

too

dt′′
∑
α,β

( [
ρI

A(t0)AI
β(t′′) , AI

α(t′)
]

× cαβ(t′ − t′′)∗ − [
AI

β(t′′)ρI
A(t0) , AI

α(t′)
]
cαβ(t′ − t′′)

)
.

(8)

The second-order term is determined by the correlation
functions

cαβ(t′ − t′′) = cβα(t′′ − t′)∗

= Tr
(
ρ0

BB
I
α(t′)BI

β(t′′)
)
,

(9)

which depend only on the difference τ = t′ − t′′. This
property follows from the fact that the operators ρ0

B and
HB commute. In the following we will assume that the
correlation functions cαβ(τ) vanish for times τ > τcorr

B .
This condition stands for the loss of memory in the sub-
system B, which is caused by its interaction with the fur-
ther “statistical” environment. It should be noted that
the finite correlation time τcorr

B is a purely empirical pa-
rameter, which expresses the statistical character of the
environment.

2.4 Coarse-grained evolution of the subsystem A

In the following we will focus our attention on the coarse-
grained evolution of the subsystem A. Assuming that the
subsystem B acts as a bath, we will thus eliminate the
physically irrelevant rapid oscillations of ρI

A(t) by taking
the time-average over a properly chosen coarse-graining
time interval ∆t. As before, we suppose weak coupling
and weak statistical correlations between the subsystems
A and B. The subsystem B fluctuates around a statistical
equilibrium described by a density matrix ρ0

B, which com-
mutes with the free Hamiltonian HB . The corresponding
correlation functions cαβ(t′ − t′′) vanish for time differ-
ences exceeding the correlation time τcorr

B . It is obvious
that the chosen coarse graining time ∆t must be larger
than the correlation time τcorr

B .
Considering the limited range of the correlation func-

tions cαβ(t′ − t′′), we see from equation (8) that the influ-
ence of the bath B on the evolution of the subsystem A is
efficient only over time intervals |t′− t′′| ≤ τcorr

B . It is thus
convenient to take τ = t′ − t′′ instead of t′′ as variable of
integration. Then the double integral in equation (8) can
be rewritten as∫ t

t0

dt′
∫ t′

t00

dt′′ . . . = −
∫ t

t0

dt′
∫ 0

t′−t00

dτ . . .

=
∫ t

t0

dt′
∫ t′−t00

0

dτ . . .



∫ t

t0

dt′
∫ ∞

0

dτ . . . .

For the last approximate equality we have used the fact
that the correlation functions cαβ(τ) vanish for τ ≥ t′ −
t00 ≥ t0 − t00 ≥ τcorr

B . Equation (8) becomes

ρI
A(t) = ρI

A(t0) +
(
i

�

)2

×
∫ t

t0

dt′
∫ ∞

0

dτ
∑
α,β

( [
ρI

A(t0)AI
β(t′ − τ) , AI

α(t′)
]

× cαβ(τ)∗ − [
AI

β(t′ − τ)ρI
A(t0) , AI

α(t′)
]
cαβ(τ)

)
.

Note that the above expression is independent of t00. In or-
der to render it more transparent, we adopt the orthonor-
mal basis {| a〉, a ∈ A} in HA that diagonalizes the free



F.A. Reuse et al.: Dissipative evolution of quantum statistical ensembles 577

Hamiltonian HA. Assuming the Hamiltonian HA to pos-
sess a discrete spectrum, we have

HA| a〉 = Ea| a〉, ∀a ∈ A
and

〈a | AI
α(t) | a′〉 = 〈a | Aα | a′〉 eiωaa′ t

with ωaa′ = (Ea −Ea′)/�. For the matrix elements of the
density matrix ρI

A(t) we get

〈a1 | ρI
A(t) | a2〉 = 〈a1 | ρI

A(t0) | a2〉

+
∑

a′
1,a′

2∈A
Γ

a′
1a′

2
a1a2 〈a′1 | ρI

A(t0) | a′2〉
∫ t

t0

e
i(ωa1a2−ωa′

1a′
2
)t′dt′.

(10)

The coefficients Γ a′
1a′

2
a1a2 are given by

Γ
a′
1a′

2
a1a2 = Γ

a′
2a′

1 ∗
a2a1

= F
a′
1a′

2
a1a2 − δ

a′
1

a1

∑
a∈A

F
a2a′

2
aa

+

(
F

a′
2a′

1
a2a1 − δ

a′
2

a2

∑
a∈A

F
a1a′

1
aa

)�

(11)

with

F
a′
1a′

2
a1a2 =

1
�2

∑
αβ

〈a1 | Aα | a′1〉 〈a′2 | Aβ | a2〉

×
∫ 0

−∞
cβα(τ)eiωa′

2a2
τ dτ.

(12)

The correlation functions cαβ(τ) have been defined in
equation (9). After evaluation of the time integral in equa-
tion (10) we obtain finally

〈a1 | ρI
A(t) | a2〉 = 〈a1 | ρI

A(t0) | a2〉
+∆t

∑
a′
1,a′

2∈A
Γ

a′
1a′

2
a1a2 〈a′1 | ρI

A(t0) | a′2〉

× g
(
(ωa1a2 − ωa′

1a′
2
)∆t
)

× e
i(ωa1a2−ωa′

1a′
2
)t̄ (13)

with

∆t = t− t0 t̄ = t0 +
∆t

2
(14)

and

g(x) =
sin(x/2)
x/2

.

Equation (13) gives us the desired time dependence of
the statistical state of the subsystem A interacting with
the bath subsystem B. It is the basis for our following

derivation of the so-called master equations, which govern
the “coarse grained” evolution of the subsystem A.

The absolute values of the exact matrix elements
〈a1 | ρI

A(t) | a2〉 are bounded by 1. This follows from
equation (2), which implies that∑

a1,a2∈A
| 〈a1 | ρI

A(t) | a2〉 |2 ≡ Tr
(
ρI

A(t)2
)

≤ Tr
(
ρI

A(t)
)

= 1.

This property restricts the validity range of equation (13)
to time intervals ∆t � τcorr

B that are small enough to
satisfy the condition 0 < ρI

A(t)2 ≤ ρI
A(t), which will

be referred to as the “positivity condition”. Note that
the approximate density matrix ρI

A(t) provided by equa-
tion (13) is already self-adjoint and that it satisfies also
Tr
(
ρI

A(t)
)

= 1.
Our present purpose is to obtain a system of equa-

tions governing the so-called “coarse grained” evolution.
In other words, we are looking for the equations, which
govern the time evolution of a “time-averaged” density
matrix ρI

A(t), where the time averaging suppresses the
oscillations generated by the bath. We define the time-
averaged density matrix DI

A,R(t̄) by

DI
A,R(t̄) =

1
∆t

∫ t̄+∆t/2

t̄−∆t/2

ρI
A(t′) dt′ (15)

with

τcorr
B � ∆t� π/ωmax, (16)

where

ωmax = max{|ωa1a2 |}, a1, a2 ∈ A

denotes the maximal transition frequency. Similar to
ρI

A(t), the operator DI
A,R(t̄) (15) is self-adjoint with unit

trace. We note, however, that the time-averaged density
matrixDI

A,R(t̄) does not strictly satisfy the positivity con-
dition.

Equation (16) allows us to use the approximate iden-
tity

g((ωa1a2 − ωa′
1a′

2
)∆t) = 1.

Then, according to the relations (13), the evolution of
the density matrix ρI

A(t) is basically governed by two dif-
ferent types of behavior. On the one hand, terms with
ωa1a2 − ωa′

1a′
2

 0 lead to a change increasing linearly

with time. On the other hand, terms corresponding to
difference frequencies significantly different from zero give
rise to oscillating contributions. Obviously, a clear cut sep-
aration between the two types of behavior is only possible
if both contributions act on different time scales. Defining
the “evolution time” τevol

A by the reciprocal value of this
slope, we first consider equation (13) under the condition

τcorr
B � ∆t < π/ωmax � τevol

A . (17)
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From the definitions (15) and (14) it follows that

d DI
A,R(t̄)
dt̄

=
ρI

A(t) − ρI
A(t0)

t− t0
.

Thus, making use of equation (17), we get from equa-
tion (13)

d 〈a1 | DI
A,R(t̄) | a2〉
dt̄

=∑
a′
1,a′

2∈A
Γ

a′
1a′

2
a1a2 〈a′1 | ρI

A(t0) | a′2〉 ei(ωa1a2−ωa′
1a′

2
)t̄
.

For the considered time intervals satisfying the condi-
tion (16), the matrix elements of ρI

A(t0) on the right-hand
side can be replaced by the respective matrix elements
of the operator DI

A,R(t̄). We then get the Redfield equa-
tions [8–10]

d 〈a1 | DI
A,R(t̄) | a2〉
dt̄

=∑
a′
1,a′

2∈A
Γ

a′
1a′

2
a1a2 〈a′1 | DI

A,R(t̄) | a′2〉 ei(ωa1a2−ωa′
1a′

2
)t̄
. (18)

When considering the effects of external forces, it is
convenient to change to a Schrödinger-like picture, in or-
der to get rid of the spurious time-dependence introduced
by the change to the interaction picture. We then have to
consider the evolution of the matrix

DA,R(t̄) = e−
i
�

HA t̄ DI
A,R(t̄) e

i
�

HA t̄. (19)

From equation (18) we find

d
dt̄

〈a1 | DA,R(t̄) | a2〉 =

i

�
〈a1 | [DA,R(t̄) , HA ] | a2〉

+
∑

a′
1,a′

2∈A
Γ

a′
1a′

2
a1a2 〈a′1 | DA,R(t̄) | a′2〉 . (20)

The “master equations” (18) and (20) govern the
coarse grained evolution of the time-averaged reduced
density matrix of the subsystem A interacting with the
bath B.

In many situations the oscillatory contributions to the
Redfield equations (18) are irrelevant. Obviously, the slow-
est oscillations are determined by

∆ωA = inf{|ωa1a2 − ωa′
1a′

2
| 
= 0, a1, a2, a

′
1, a

′
2 ∈ A}.

This quantity is different from zero, since according to
our assumptions the subsystem A possesses only a finite
number N of energy levels. Obviously, linear and oscilla-
tory contributions to the evolution of the time-averaged
density matrix are well distinguished if

2π/∆ωA � τevol
A .

Performing the time average in equation (15) over time
intervals ∆t satisfying

τcorr
B � π/ωmax < 2π/∆ωA � ∆t � τevol

A ,

instead of the condition (17), we find that even the slow-
est oscillatory terms in equation (18) disappear under the
averaging procedure and that only terms with ωa′

1a′
2

=
ωa1a2 contribute. Then the resulting evolution of the time-
averaged density matrix DI

A(t̄) becomes Markovian, i.e.,
we get

d 〈a1 | DI
A(t̄) | a2〉
dt̄

=
∑

{a′
1,a′

2|ωa′
1a′

2
=ωa1a2}

Γ
a′
1a′

2
a1a2 〈a′1 | DI

A(t̄) | a′2〉 . (21)

In order to simplify our terminology, we will from now
on refer to these equations as the master equations govern-
ing the Markovian coarse-grained evolution or the Marko-
vian master equations. Switching to the Schrödinger pic-
ture, we get in full analogy with equations (19, 20)

DA(t̄) = e−
i
�

HA t̄ DI
A(t̄) e

i
�

HA t̄

and

d
dt̄

〈a1 | DA(t̄) | a2〉 =

i

�
〈a1 | [DA(t̄) , HA ] | a2〉

+
∑

{a′
1,a′

2|ωa′
1a′

2
=ωa1a2}

Γ
a′
1a′

2
a1a2 〈a′1 | DA(t̄) | a′2〉 . (22)

In contrast with the Redfield equation (18), the
Markovian coarse-grained evolution of the averaged den-
sity matrix DI

A(t̄) (21) is already fully determined by the
coefficients Γ a′

1a′
2

a1a2 with ωa′
1a′

2
= ωa1a2 . The Redfield equa-

tion (18) becomes relevant if one looks for the system re-
sponse to an external time-periodic field with frequencies
of the order of the transition energies. Such a situation
is e.g. encountered in NMR experiments under stationary
conditions.

A lot of important physical properties can be ade-
quately treated with the Markovian master equations. We
will thus limit most of our following discussions to equa-
tions (21, 22). The principal simplifications resulting from
the restriction to the subset of the Γ coefficients will be
discussed in Sections 2.5 and 2.6.

2.5 Markovian coarse-grained evolution:

Structure of the coefficients Γ
a′

1a
′
2

a1a2

In this subsection we will rearrange the master equa-
tions (22) in order to get a better insight into the mecha-
nisms governing the Markovian coarse-grained evolution.
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Starting from equation (11), we can rewrite the coeffi-
cients Γ a′

1a′
2

a1a2 in equations (21, 18) in the form

Γ
a′
1a′

2
a1a2 = Γ

a′
1a′

2
0 a1a2

− 1
�

(
δ

a′
1

a1 Ga′
2a2 + δ

a′
2

a2 Ga1a′
1

)
+
i

�

(
δ

a′
1

a1∆Ha′
2a2 − δ

a′
2

a2∆Ha1a′
1

)
(23)

with

Γ
a′
1a′

2
0 a1a2

≡
(
Γ

a′
2a′

1
0 a2a1

)�

= F
a′
1a′

2
a1a2 +

(
F

a′
2a′

1
a2a1

)�

, (24)

Gaa′ =
�

2

∑
a′′∈A

Γ a′ a
0 a′′a′′ , (25)

and

∆Haa′ =
i �

2

∑
a′′∈A

(
F a′ a

a′′a′′ −
(
F a a′

a′′a′′

)�)
. (26)

The first two terms in equation (23) give rise to the ir-
reversible evolution of the subsystem A. The operators G
and ∆HA describe the effective dynamical coupling be-
tween the states of the system A that is induced by the
polarization of the bath subsystem B, which – in turn –
is a consequence of its interaction with the subsystem A.
While the operatorG ensures the conservation of the trace
of the time-averaged density matrix DA(t̄), the operator
∆HA leads to a correction of the Hamiltonian HA. In
other words, ∆HA represents a self-energy operator.

The master equations in the Schrödinger picture, equa-
tions (20, 22), may be rewritten as

d
dt̄

DA(t̄) =
i

�
[DA(t̄) , HA ] + Γ (DA(t̄)), (27)

where Γ is a linear superoperator acting on L(HA),

Γ (X) =

Γ0(X) +
i

�
(X (∆HA + iGA) − (∆HA − iGA)X) ,

∀X ∈ L(HA)

(28)

with

〈a1 | Γ0(X) | a2〉 =
∑

a′
1,a′

2∈A
Γ

a′
1a′

2
0 a1a2

〈a′1 | X | a′2〉 . (29)

Here and in the following Section 2.6 we will assume
that the restriction of the summation in equations (21, 22)
is justified. It can be replaced by adopting the convention

Γ
a′
1a′

2
a1a2 = Γ

a′
1a′

2
0 a1a2

= 0 for ωa′
1a′

2

= ωa1a2 . (30)

Since then we have only to consider the case ωa′
1a′

2
=

ωa1a2 , we obtain from the expression (12) for the coef-
ficients F a′

1a′
2

a1a2

F
a′
1a′

2
a1a2 ±

(
F

a′
2a′

1
a2a1

)�

=
1
�

∑
αβ

〈a1 | Aα | a′1〉 〈a′2 | Aβ | a2〉{
χβα(ωa′

1a1)
iχ̄βα(ωa′

1a1)
(31)

with

χαβ(ω) =
1
�

∫ ∞

−∞
cαβ(τ) eiωτdτ (32)

and
χ̄αβ(ω) =

i

�

∫ ∞

−∞
ε(τ) cαβ(τ) eiωτ dτ, (33)

where the function ε(τ) in the last integral represents the
Heaviside function

ε(τ) =


−1 if τ < 0
0 if τ = 0
1 if τ > 0 .

The functions χαβ(ω) and χ̄αβ(ω) are connected by
Kramers-Kronig relations (see Sect. 4). From the symme-
try property (9) of the correlation functions cαβ(t′− t′′) it
follows that ∀α, β and ω ∈ R

χαβ(ω)� = χβα(ω),
χ̄αβ(ω)� = χ̄βα(ω).

In order to specify the coefficients Γ a′
1a′

2
a1a2 it is conve-

nient to introduce the basis set | b〉, b ∈ B provided by the
eigenvectors of HB and ρ0

B. Since presently the spectra of
these operators are assumed to be discrete, we have

HB| b〉 = Eb| b〉, ρ0
B| b〉 = pb| b〉,

and the correlation functions (9) become

cαβ(τ) =
∑

b,b′∈B
pb 〈b | Bα | b′〉 〈b′ | Bβ | b〉 e−iωb′bτ .

(34)
Insertion into equations (32, 33) yields

χαβ(ω) =
2π
�

∑
b,b′∈B

pb 〈b | Bα | b′〉 〈b′ | Bβ | b〉 δ(ω − ωb′b),

(35)
χ̄αβ(ω) =

− 2
�

∑
b,b′∈B

pb 〈b | Bα | b′〉 〈b′ | Bβ | b〉 1
ω − ωb′b

.

(36)

The matrix χαβ(ω) is positive, since for any

X =
∑

α

xαBα, xα ∈ C, ∀α

we get immediately∑
α,β

x�
αχαβ(ω)xβ =

2π
�

∑
b,b′∈B

pb| 〈b′ | X | b〉 |2δ(ω − ωb′b) ≥ 0. (37)
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From the definition (24) and equation (31) we then obtain
that the coefficients Γ a′

1a′
2

0 a1a2
can be written as a positive

hermitian form, i.e.,

Γ
a′
1a′

2
0 a1a2

=
1
�

∑
αβ

y�
β χβα(ωa′

1a1)xα (38)

with the vectors

xα = 〈a1 | Aα | a′1〉 , yβ = 〈a2 | Aβ | a′2〉 .

For a1 = a2 and a′1 = a′2 they are real positive, i.e.,

Γ a′a′
0 a a ≥ 0. (39)

The Cauchy-Schwarz inequality for positive hermitian
forms implies

|Γ a′
1a′

2
0 a1a2

| ≤
√
Γ

a′
1a′

1
0 a1a1

√
Γ

a′
2a′

2
0 a2a2

.

In particular, we have

Re
(
Γ a1a2

0 a1a2

) ≤√Γ a1a1
0 a1a1

√
Γ a2a2

0 a2a2
.

Exploiting equations (23, 24, 25, 26), we get

Re
(
Γ a1a2

a1a2

) ≤√
Γ a1a1

0 a1a1

√
Γ a2a2

0 a2a2
− 1

2

∑
a′∈A

(Γ a1a1
0 a′a′ + Γ a2a2

0 a′a′ )

= −1
2

((√
Γ a1a1

0 a1a1
−
√
Γ a2a2

0 a2a2

)2

+
∑

{a′|a′ �=a1}
Γ a1a1

0 a′a′ +
∑

{a′|a′ �=a2}
Γ a2a2

0 a′a′


≤ 0. (40)

The inequality on the last line is found from equation (39).
These relations will be useful for our discussion of the
coherences in Section 2.6.

Equation (25) defines a self-adjoint operator GA. The
coarse-graining condition equation (30) implies that its
matrix elements

〈a | GA | a′〉 ≡ Gaa′ , ∀a, a′ ∈ A

are zero for ωaa′ 
= 0. Thus, the spectral subspaces of
the free Hamiltonian HA remaining unchanged under the
action of GA, we have

[GA , HA ] = 0.

Adopting a basis that diagonalizes simultaneously both
operators GA and HA, we find from the definition (25)
and equations (37, 38)

GA ≥ 0.

Similarly, equation (26) defines the matrix elements of
the self-adjoint self-energy operator ∆HA

〈a | ∆HA | a′〉 ≡ ∆Haa′

= −1
2

∑
a′′∈A

∑
αβ

〈a | Aα | a′′〉 〈a′′ | Aβ | a′〉

× χ̄αβ(ωaa′′). (41)

Again, these matrix elements are zero for ωaa′ 
= 0, so that

[∆HA , HA ] = 0.

For ωaa′ = 0 we get from equations (36, 41)

〈a | ∆HA | a′〉 =∑
a′′∈A

∑
b,b′′∈B

pb
〈b, a | Hint | a′′, b′′〉 〈b′′, a′′ | Hint | a′, b〉

Ea + Eb − Ea′′ − Eb′′
,

where 〈b, a | Hint | a′′, b′′〉 stands for 〈b |⊗ 〈a |Hint| a′′〉⊗
| b′′〉.

In most cases the matrix elements of the self-energy
operator 〈a |∆HA | a′〉 will be rather small, so that∆HA

can be neglected. Otherwise the contributions of∆HA can
normally be removed using conventional renormalization
procedures. Then equation (23) simplifies to

Γ
a′
1a′

2
a1a2 
 Γ

a′
1a′

2
R a1a2

= Γ
a′
1a′

2
0 a1a2

− 1
�

(
δ

a′
1

a1Ga′
2a2 + δ

a′
2

a2Ga1a′
1

)
.

Inserting the expression (35) for χαβ(ω) into equa-
tion (38), we get for ωa′

1a1 = ωa′
2a2

Γ
a′
1a′

2
0 a1a2

=
2π
�

∑
b,b′′∈B

pb 〈b, a′2 | Hint | a2, b
′′〉 〈b′′, a1 | Hint | a′1, b〉

× δ
(
Ea′

1
+ Eb − Ea1 − Eb′′

)
.

In particular,

Γa→a′ ≡ Γ a a
0 a′a′ =

2π
�

∑
b,b′′∈B

pb| 〈b, a | Hint | a′, b′′〉 |2δ (Ea + Eb − Ea′ − Eb′′)

(42)

is the transition rate corresponding to Fermi’s Golden
Rule, where the statistical equilibrium of the subsystem B
is taken into account via the probability distributions pb.

2.6 Coarse-grained evolution of the populations,
coherences and detailed balance relations

For simplicity, let us suppose that the energy splittings
�ωaa′ are all different and non-zero, so that we have a
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one-to-one correspondence between ωaa′ and the energy
levels Ea and Ea′ . Then the condition ωa′

1a1 = ωa′
2a2 im-

plies a1 = a2 and a′1 = a′2. According to equation (21), the
evolution of the diagonal elements of the coarse-grained
density matrix, usually referred to as “populations”, is
governed by

d 〈a | DI
A(t̄) | a〉
dt̄

=
∑
a′∈A

Γ a′a′
a a 〈a′ | DI

A(t̄) | a′〉 . (43)

Inspection of equation (23) shows that

Γ a′a′
a a = Γ a′a′

0 a a ≡ Γa′→a for a 
= a′.

For a = a′ we get from equations (23, 25)

Γ aa
aa = Γ aa

0 aa −
∑
a′∈A

Γ a a
0 a′a′ = −

∑
{a′|a′ �=a}

Γa→a′ . (44)

Thus, equations (43) becomes

d 〈a | DI
A(t̄) | a〉
dt̄

=∑
{a′|a′ �=a}

Γa′→a 〈a′ | DI
A(t̄) | a′〉 − Γa→a′ 〈a | DI

A(t̄) | a〉 .

(45)

Supposing now the bath to be in thermal equilibrium, we
have

pb =
1
ZB

e−Eb/kBT with ZB =
∑
b∈B

e−Eb/kBT ,

where T is the temperature of the bath, and kB denotes
the Boltzmann constant. Equation (42) then becomes

Γa→a′ =
2π
�

∑
b,b′∈B

1
ZB

e−Eb/kBT | 〈b, a | Hint | a′, b′〉 |2

× δ
(
Ea + Eb − Ea′ − Eb′

)
=

2π
�

∑
b,b′∈B

1
ZB

e(Ea−Ea′−Eb′)/kBT | 〈b, a | Hint | a′, b′〉 |2

× δ (−Ea − Eb + Ea′ + Eb′) ,

which implies

Γa→a′

Γa′→a
=

eEa/kBT

eEa′/kBT
.

Inserting the above relation into equation (45), we get the
equilibrium condition∑
{a′|a′ �=a}

Γa′→a

(
〈a′ | DI

A(t̄) | a′〉

− e(Ea−Ea′)/kBT 〈a | DI
A(t̄) | a〉

)
= 0.

This condition holding for arbitrary temperature, we find

〈a | DI
A(t̄) | a〉 =

1
ZA

e−Ea/kBT (46)

with

ZA =
∑
a∈A

e−Ea/kBT ,

or the equivalent “detailed-balance” relations

Γa′→a 〈a′ | DI
A(t̄) | a′〉 − Γa→a′ 〈a | DI

A(t̄) | a〉 = 0,

∀a, a′ ∈ A.
Equation (46) shows that the subsystem A tends toward
a thermal equilibrium, the temperature being that of the
bath. Note that this result is independent of any high-
temperature approximation.

The evolution of the coherences for a1 
= a2 is obtained
from

d 〈a1 | DI
A(t̄) | a2〉
dt̄

= Γ a1a2
a1a2

〈a1 | DI
A(t̄) | a2〉 .

According to equation (40) the real part of Γ a1a2
a1a2

is neg-
ative or zero, i.e., as expected, the coherences cannot in-
crease with time.

3 Irreversible evolution and energy dissipation

The “coarse-grained” expectation value of an observable of
the subsystem A, characterized by a self-adjoint operator
OA and independent of time in the Schrödinger picture,
is given by

〈 OA 〉 (t̄) = Tr (DA(t̄) OA) . (47)

From equations (27, 28, 29) we obtain

d
dt̄

〈 OA 〉 (t̄) = 〈 i

�
[HA +∆HA , OA ] 〉 (t̄)

− 1
�
〈 {GA , OA } 〉 (t̄)

+ Tr (OA Γ0(DA(t̄))) . (48)

Replacing OA by HA in equation (47), we get the mean
energy of the subsystem A,

EA(t̄) = Tr (DA(t̄) HA) .

From equation (48) and using the definition (25) of Gaa′ ,
we obtain for its evolution

dEA(t̄)
dt̄

=
∑

{a′
1,a′

2∈A|ωa′
1a′

2
=0}

(∑
a∈A

(
Ea − Ea′

2

)
Γ

a′
1a′

2
0 a a

)

× 〈a′1 | DA(t̄) | a′2〉
≡ Tr

(SAD
I
A(t̄)

)
(49)
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with

〈a′2 | SA | a′1〉 =
∑
a∈A

(
Ea − Ea′

2

)
Γ

a′
1a′

2
0 a a . (50)

Adopting the coarse-graining approach for large time in-
tervals described by equation (21) or, equivalently by
equation (30), the matrix elements 〈a′2 | SA | a′1〉 are zero
for ωa′

1a′
2

= 0. The operator SA is self-adjoint and com-

mutes with HA. It describes an energy source or an energy
sink provided by the bath. The dynamical influence of the
bath is determined by the functions χαβ(ωa′

1a), which en-

ter the definition (38) of the coefficients Γ a′
1a′

2
0 a a . Starting

from equation (32), we introduce the decomposition

χαβ(ω) = χ′
αβ(ω) + i χ′′

αβ(ω)

with

χ′
αβ(ω) ≡ χ′

αβ(−ω)� =
1
�

∫ ∞

−∞
Re (cαβ(τ)) eiωτdτ (51)

and

χ′′
αβ(ω) ≡ χ′′

αβ(−ω)� =
1
�

∫ ∞

−∞
Im (cαβ(τ)) eiωτdτ. (52)

From equation (9) we find that the matrices (χ′
αβ(ω)) and

(χ′′
αβ(ω)) are hermitian and anti-hermitian, respectively,

i.e.,

χ′
αβ(ω)� = χ′

βα(ω),

χ′′
αβ(ω)� = −χ′′

βα(ω).

Inserting the expression (38) for the coefficients Γ a′
1a′

2
0 a a

into the definition (50), we can rewrite the source term as

SA = FA + DA

where the matrix elements of the operators FA and DA

are zero for ωa′
1a′

2

= 0, and

〈a′2 | FA | a′1〉 =

−
∑
α,β

∑
a∈A

ωa′
1a 〈a′2 | Aα | a〉 〈a | Aβ | a′1〉 χ′

αβ(ωa′
1a)

〈a′2 | DA | a′1〉 =

− i
∑
α,β

∑
a∈A

ωa′
1a 〈a′2 | Aα | a〉 〈a | Aβ | a′1〉 χ′′

αβ(ωa′
1a)

for ωa′
1a′

2
= 0. Clearly, the thus defined operators FA and

DA are self-adjoint and commute with HA. Equation (49)
now becomes

dEA(t̄)
dt̄

= Tr (FADA(t̄)) + Tr (DADA(t̄)) . (53)

Let us recall that the correlation functions (9), which en-
ter the definitions (51) and (52), describe the dynamical

response of the bath subsystem B to the perturbation by
the subsystem A. The real parts are given by

Re (cαβ(t− t′)) =
1
2
Tr
(
ρ0

B{BI
α(t), BI

β(t′)}) ,
where the symbol { ... , ... } stands for the anti-
commutator. They may be seen as the quantum analog
of a classical correlation function. Consequently, the term
FA may be associated with the contribution of the fluc-
tuations. The operator term DA is associated with the
imaginary parts of the correlation functions

Im (cαβ(t− t′)) =
1
2i

Tr
(
ρ0

B[BI
α(t), BI

β(t′)]
)
.

Under certain conditions, which will be discussed in the
following, it leads to energy dissipation.

The operator DA commutes with HA. Thus, the eigen-
vectors of HA forming the basis set {| a〉} can be chosen
to be simultaneously eigenvectors of DA. The eigenvalues
of DA are given by

〈a′ | DA | a′〉 =

−
∑
α,β

∑
a

〈a′ | Aα | a〉 〈a | Aβ | a′〉 ψαβ(ωa′a)

with

ψαβ(ω) = iωχ′′
αβ(ω)

=
π

�

∑
b,b′

(pb − pb′)ωb′b 〈b | Bα | b′〉 〈b′ | Bβ | b〉

× δ(ω − ωb′b).

The last equality is obtained from the definition (52) of
χ′′

αβ(ω) and using equation (34). Obviously, the hermitian
matrix (ψαβ(ω)) is positive if and only if

(pb − pb′) ωb′b ≥ 0, ∀b, b′.
In other words, DA is always negative if the bath at sta-
tistical equilibrium satisfies the condition

Eb ≥ Eb′ ⇐⇒ pb ≤ pb′ , ∀b, b′. (54)

When the subsystem A is at equilibrium, the two terms on
the right-hand side of equation (53) cancel each other, i.e.,
the dissipative term Tr

(DAD
I
A(t̄)

)
is compensated by the

term Tr
(FAD

I
A(t̄)

)
associated with the fluctuations. This

generalizes the fluctuation-dissipation theorem [33–35] to
the case of non-thermal equilibria.

In particular, the condition (54) is satisfied for a ther-
mal bath with a positive temperature T , where

pb =
1
ZB

exp
(
− Eb

kBT

)
.

The fluctuation-dissipation theorem then implies

χ′′
αβ(ω) = − i tanh

(
�ω

2kBT

)
χ′

αβ(ω). (55)
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4 Kramers-Kronig relations

In the following we derive the Kramers-Kronig relations
for the advanced and retarded susceptibilities correspond-
ing to equation (A.7). We first establish the relations be-
tween the functions χαβ(ω) and χ̄αβ(ω) defined in equa-
tions (32, 33), respectively. Starting from the definition of
χ̄αβ(ω) in equation (33)

χ̄αβ(ω) =
i

�

∫ ∞

−∞
ε(τ) cαβ(τ) ei ωτdτ (56)

and rewriting the Heaviside function as

ε(τ) = lim
η→0

i

2π

∫ ∞

−∞

(
1

ω′ + i η
+

1
ω′ − i η

)
e−i ω′τdω′,

we get

χ̄αβ(ω) = − lim
η→0

1
2π�

∫ ∞

−∞
dτ cαβ(τ)

×
∫ ∞

−∞
dω′

(
1

ω′ + i η
+

1
ω′ − i η

)
× ei (ω−ω′)τ

= − lim
η→0

1
2π

∫ ∞

−∞
dω′

(
1

ω′ + i η
+

1
ω′ − i η

)
× χαβ(ω − ω′),

where we have made use of the definition (32). Finally,
changing the integration variable ω′ into ω−ω′, we obtain

χ̄αβ(ω) = − 1
π

P
∫ ∞

−∞

χαβ(ω′)
ω − ω′ dω′. (57)

Similarly, rewriting the definition (32) of χαβ(ω) as

χαβ(ω) =
1
�

∫ ∞

−∞
ε(τ) {ε(τ) cαβ(τ)} ei ωτ dτ

and otherwise using the same arguments as above, we find

χαβ(ω) =
1
π

P
∫ ∞

−∞

χ̄αβ(ω′)
ω − ω′ dω′. (58)

The Hilbert transforms (57) and (58) establish the so-
called Kramers-Kronig relations. They are equivalent to
the commonly used Kramers-Kronig relations between the
real and the imaginary part of the susceptibility functions.
In fact, the susceptibility functions κret

αβ (ω) and κadv
αβ (ω)

describing the retarded and the advanced response, re-
spectively, are given by the Fourier transforms of the func-
tions

cret
αβ (t− t′) = − i

�
Tr
(
ρ0

B

[
BI

α(t) , BI
β(t′)

])
Θ(t − t′)

=
2
�

Im (cαβ(t− t′))Θ(t − t′) (59)

and

cadv
αβ (t− t′) = − i

�
Tr
(
ρ0

B

[
BI

α(t) , BI
β(t′)

])
Θ(t′ − t)

=
2
�

Im (cαβ(t− t′))Θ(t′ − t) (60)

with

Θ(τ) =


0 if τ < 0
1
2 if τ = 0
1 if τ > 0 .

We first consider the retarded response. According to
equation (59) we can write

cret
αβ (τ) =

1
�

(Im (cαβ((τ))) + ε(τ) Im (cαβ(τ))) .

The Fourier transform κret
αβ (ω) of the above function can

be expressed in the form

κret
αβ (ω) = χ′′

αβ(ω) − iχ̄′′
αβ(ω), (61)

where the function χ′′
αβ(ω) is defined by equation (52),

and

χ̄′′
αβ(ω)) =

1
�

∫ ∞

−∞
ε(τ)Im (cαβ(τ)) eiωτdτ. (62)

Starting from equation (60) and otherwise following the
same arguments, we obtain for the susceptibility function
corresponding to the advanced response

κadv
αβ (ω) = χ′′

αβ(ω) + iχ̄′′
αβ(ω), (63)

Now, it can easily be seen that the above deriva-
tion of the Kramers-Kronig relations (57) and (58) re-
mains valid when we replace cαβ(τ) in equation (56) by
Im (cαβ(τ)). This means that the Kramers-Kronig rela-
tions (57) and (58) hold likewise for χ′′

αβ(ω) and χ̄′′
αβ(ω)).

Using these relations we find immediately

1
π

P
∫ ∞

−∞

χ′′
αβ(ω′) ∓ iχ̄′′

αβ(ω′)
ω − ω′ dω′ =

− i
(±χ′′

αβ(ω) − iχ̄′′
αβ(ω)

)
.

From equations (61, 63), we then get

1
π

P
∫ ∞

−∞

κret
αβ (ω′)
ω − ω′ dω′ = −i κret

αβ (ω)

and

1
π

P
∫ ∞

−∞

κadv
αβ (ω′)
ω − ω′ dω′ = i κadv

αβ (ω).

Taking the real or the imaginary part of the above equa-
tion, we obtain the usual form of the Kramers-Kronig rela-
tions for the susceptibility functions describing either the
retarded or the advanced response.
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5 Stationary response to an external
time-periodic perturbation

In the following we will apply our approach to study the
stationary properties of the “bathed” subsystemA in pres-
ence of an external time-periodic perturbation. We de-
scribe the perturbation by an extra term Hext(t) added to
the Hamiltonian HA. We will assume that the perturba-
tion does neither affect the equilibrium statistical state of
the bath nor the dynamical coupling of the bath B to the
subsystem A.

Clearly, to treat this problem it is appropriate to adopt
the Schrödinger picture. We first define the Liouville su-
peroperator L

L(X) = Γ (X) + LH(X), ∀X ∈ L(HA), (64)

where the superoperator Γ is defined by equation (28),
and

LH(X) =
i

�
[X , HA ] , ∀X ∈ L(HA). (65)

Referring to the Hilbert-Schmidt scalar product

〈X | Y 〉 = Tr
(
X† Y

)
, X, Y ∈ L(HA), (66)

the linear superoperator LH is “anti-selfadjoint”,

L†
H = −LH .

Starting from the definitions (28), (64) and (65), it is easily
shown that

LH

(
X†) = (LH (X))† , (67)

Γ
(
X†) = (Γ (X))† , (68)

L
(
X†) = (L (X))† . (69)

In order to simplify the notation, we will from now on
denote the coarse-grained density matrix DA by D. The
equation of evolution (27), including the contribution of
the Hamiltonian term Hext(t), then becomes

dD(t)
dt

= L(D(t)) +
i

�
[D(t) , Hext(t) ] (70)

with Tr (D) = 1. The time-periodic perturbation will be
taken as

Hext(t) = FAe
−iωt + F †

Ae
iωt. (71)

Clearly, equation (70) makes sense only if the change of the
perturbation Hext(t) is negligible over times of the order
of the coarse graining time. We will therefore assume that

2π/ω � ∆t� τcorr
B .

Moreover, in order to reveal resonance features, the cho-
sen frequency ω should be of the order of the transition

frequencies ωaa′ of the subsystem A. Multiplying the per-
turbation Hext(t) by the parameter λ with 0 ≤ λ ≤ 1, we
get from equations (70, 71)

dD(t)
dt

= L(D(t)) +
iλ

�
[D(t) , FA ] e−iωt

+
iλ

�

[
D(t) , F †

A

]
eiωt. (72)

The solution for the time-averaged density matrix can
be written as a power series with respect to the parame-
ter λ,

D(t) =
∞∑

n=0

λnDn(t) (73)

with

Tr (D0) = 1,
Tr (Dn(t)) = 0 , ∀n > 0 , ∀t,
D†

n(t) = Dn(t) , ∀n , ∀t.
Inserting the expression (73) into equation (72) and equat-
ing λn terms on both sides, we get

dDn(t)
dt

= L(Dn(t)) +
i

�
[Dn−1(t) , FA ] e−iωt

+
i

�

[
Dn−1(t) , F

†
A

]
eiωt. (74)

The solution D0 for λ = 0 describes the coarse-grained
density matrix in absence of the external perturbation.
Being time-independent, it satisfies the relation

L(D0) = 0. (75)

For the following discussion we will assume that the un-
perturbed solution D0 is unique. Making use of Floquet’s
theorem [36], we obtain for the stationary solutions

Dn(t) =
n∑

k=−n

D k
n e

ikωt (76)

with

D 0
0 ≡ D0 (77)

and

Tr
(
D 0

0

)
= 1,

Tr
(
D k

n

)
= 0 , ∀n > 0,

D−k
n = D k

n

†
, |k| ≤ n.

The property

D k
n = 0 for |k| > n, (78)

leading to the limitation of the summation in equa-
tion (76), follows from the fact that the recursion starts
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from the time-independent D0. Inserting equation (76)
into equation (74), we obtain the recursion relation

(ikω − L)D k
n =

i

�

[
D k+1

n−1 , FA

]
+
i

�

[
D k−1

n−1 , F
†
A

]
. (79)

From the condition (78) we find

L(D 0
1 ) = 0, (80)

i.e., D 0
1 satisfies the same relation as D0 (see Eq. (75)).

Since presently we have assumed that equation (75) pos-
sesses a unique solution, only the trivial solution of equa-
tion (80) is admissible, i.e.,

D 0
1 = 0.

From the condition (78) and the relations (79) we then
find that

D n−1
n = 0, ∀n > 0.

Following the same arguments, it is easy to see that

D k
n = 0, for odd |n− k|.

Expressed in terms of the linear superoperators

R−(z)X =
1
�

1
z1 + iL

[X , FA ] , (81)

R+(z)X =
1
�

1
z1 + iL

[
X , F †

A

]
, (82)

(R−(z)X)† = R+(−z)X†, (83)

where the last relation follows directly from the preced-
ing definitions and the property (69), the recursion rela-
tions (79) become

D k
n = R−(kω)D k+1

n−1 +R+(kω)D k−1
n−1 . (84)

This relation can be used to express the solutions D k
n in

terms of the zero-field solution D0 (77).
The recurrence relations show that high-frequency con-

tributions correspond to high-order perturbation terms. A
stationary solution exists only if the series (73) converges
for λ = 1. We thus may assume in the following that the
terms D k

n become negligible for |k| > km. Then, the re-
cursion relations can be formally written in the compact
form

Qn = T nQ0, (85)

where T is a tridiagonal (2km +1)×(2km+1) matrix with
the elements

Tk,l =



R+(k ω) for l = k − 1,
k = km, . . . ,−km + 1

R−(k ω) for l = k + 1,
k = km − 1, . . . ,−km

0 otherwise

with k, l = km, . . . ,−km, and the column vectors

Q0 =



0
...
0
D 0

0

0
...
0


, Qn =


D km

n
...
D 0

n
...

D−km
n

 .

For the evaluation of the recursion relations (85) it
is convenient to express the operators HA and FA in an
operator basis, and then to study the action of the super-
operators L,LH and Γ on these basis operators. In the
following we assume that the eigenstates of HA are non-
degenerate, and that they are labeled such that

Ea − Ea′ > 0, a, a′ = 1, . . . , N for a > a′.

A state | a〉 may be associated with the vector

ea = (0, . . . , 0, 1, 0, . . . , 0) , ea ∈ R̃
N

where the 1 is placed at the a-th position. Then the vectors

α = ea − ea′ = (0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0)
= (α1, . . . , αN )

identify pairs of coupled states | a〉 and | a′〉. The set of
vectors α will be denoted R. Using this notation, we define
the operators

Pa = | a〉〈a |, a = 1, . . . , N.

and

Xα = | a〉〈a′ |, a 
= a′, a, a′ = 1, . . . , N. (86)

Obviously, we have

P †
a = Pa, X†

α = X−α. (87)

The operators Pa and Xα form an orthonormal basis
with respect to the Hilbert-Schmidt scalar product (see
Eq. (66)),

〈Xα | Xβ〉 = δαβ ,

〈Pa | Pa′〉 = δaa′ ,

〈Xα | Pa〉 = 0.
(88)

They satisfy the commutation relations

[Pa , Pa′ ] = 0, (89)

[Xα , Xβ ] = cγαβXγ , α, β ∈ R, α+ β 
= 0, (90)

[Xα , X−α ] =
N∑

a=1

αaPa = α · P , (91)
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with

cγαβ =


+1 if γ = α− β ∈ R
−1 if γ = α+ β ∈ R

0 otherwise
(92)

and
P = (P1, . . . , PN ) .

For an operator

Y = y · P, y ∈ CN

with
y = (y1, . . . , yN)

we obtain

[Y , Xβ ] = (y · β)Xβ (93)

Defining the vector

E = (E1, E2, . . . , EN ) ,

where Ei, i = 1, . . . , N denote the state energies of the
considered N-level system, we get for the transition fre-
quency associated with Xα

ωα = ωaa′ =
1
�
α · E.

Expressed in this operator basis, the Hamiltonian HA

reads

HA =
N∑

a=1

EaPa = E · P .

According to equations (89, 93) it satisfies the commuta-
tion relations

[HA , Y ] = 0, (94)
[HA , Xα ] = (E · α)Xα. (95)

The operator FA entering the definition of the perturba-
tion term in equation (71) can be written

FA =
∑
α

fαXα, fα ∈ C , ∀α ∈ R. (96)

Equations (94, 95) allow us to describe the action of
the superoperators LH , L and Γ on the basis operators.
For the Liouville operator LH we obtain

LH(Pa) = 0, (97)

LH(Xα) = −i ωαXα. (98)

The superoperator Γ describes the weak interaction of the
subsystem A with the bath. In the following we will as-
sume that the corresponding coupling between the opera-
tor subspaces spanned by Pb, b = 1, . . . , N and Xα, α ∈ R
is negligible, so that

〈Xα|Γ (Pb)〉 = Γ b b
a a′ 
 0,

〈Pb|Γ (Xα)〉 = Γ a a′
b b 
 0.

(99)

Looking for the Markovian coarse-grained evolution, the
situation is adequately treated using the convention (30).
In this case, the above conditions are immediately valid
for the presently discussed situation of a non-degenerate
excitation spectrum. Even for the non-Markovian regime
on shorter time-scales covered by the Redfield equations
(see Eqs. (18, 20)) the approximation (99) will be appro-
priate in many situations.

The action of the superoperator Γ in the operator sub-
space spanned by the operatorsXα can be treated in first-
order perturbation theory if the associated transition fre-
quencies �ωα are not too small. Under this assumption,
we can neglect the non-diagonal matrix elements

〈Xα|Γ (Xβ)〉, α 
= β

and put

Γ (Xα) = −λαXα with λα = −Γ aa′
aa′ . (100)

According to equation (40), we have Re (λα) ≥ 0. For the
here considered systems possessing a unique solution of
equation (75) we have even

Re (λα) > 0, (101)

since otherwise excitations of type α cannot relax. From
equations (98) and (100), we get

L(Xα) = −i ΩαXα with Ωα = ωα − iλα, (102)

i.e., treating the operator Γ in first-order perturbation
theory, the basis vectors Xα become eigenstates of the
operator L. From equations (87) and (69) it follows that

Ω−α = −Ωα
�.

The action of the superoperator Γ in the operator sub-
space spanned by the projectors Pa has to be considered
with some more care. The matrix elements of Γ in this
subspace are given by

〈Pa|Γ (Pa′)〉 = Γ a′a′
a a .

From equation (44) we see that the diagonal and non-
diagonal matrix elements of the operator Γ are of the same
order. According to equation (97) the operator LH does
not contribute to the eigenvalues of L. Thus, the diagonal
and off-diagonal elements of L being of the same order, we
are now obliged to solve the eigenvalue problem for the op-
erator Γ in this subspace. In order to avoid unnecessary
complications, we will assume in the following that the
eigenvalues of L in the operator subspace spanned by the
operators Pa, a = 1, . . . , N are all different. Then, apart
from the solution Y0(= D0) corresponding to the eigen-
value zero, we have further N-1 non-orthogonal eigenstates
Yl satisfying the equation

L (Yl) = −iΩl Yl, l = 1, . . . , N − 1, (103)

with Ωl 
= 0 and, since Tr (Γ (Pa)) = 0, ∀a,
Tr (Yl) = 0 , l = 1, . . . , N − 1. (104)
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The eigenstates

Yl =
N∑

a=1

ylaPa = yl · P , l = 1, . . . , N − 1 (105)

may be normalized. They are, however, non-orthogonal,
so we have

Tr
(
Yl′

†Yl

)
=

N∑
a=1

y�
l′ayla ≡ gl′l, gll = 1. (106)

From equation (93) we find immediately

[Yl , Xα ] = (yl · α)Xα

≡ cαlαXα (107)

for l = 1, . . . , N − 1, α ∈ R. Similarly, writing the nor-
malized equilibrium solution as

Y0 = y0 · P,
we get

[Y0 , Xα ] = (y0 · α)Xα

≡ p0αXα. (108)

The presumed stability of the system in the neighborhood
of its equilibrium density matrix D0 requires that the real
parts of the eigenvalues −iΩl are all negative. This prop-
erty follows directly from the relations (23), (39), (44) and
Gerschgorin’s theorem [37].

For the following discussion it is convenient to decom-
pose the superoperatorsR−(z) andR+(z) defined in equa-
tions (81, 82). We thus write

R−(z) =
∑
β∈R

fβRβ(z), (109)

R+(z) =
∑
β∈R

f�
−βRβ(z) (110)

with

Rβ(z)X =
1
�

1
z1 + iL

[X , Xβ ] . (111)

The action of the operators Rβ(z) on the operators Xα

and Yl is obtained from equations (90, 102, 91). We find

Rβ(z)Xα =
1
�

1
z1 + iL


cγαβXγ , γ = α± β ∈ R
N−1∑
l=1

clα,−αYl, β = −α

0 otherwise,

(112)

where the coefficients clα,−α are obtained from equa-
tions (91, 105, 106),

clα,−α = α ·
(

N−1∑
l′=1

(
g−1

)
ll′ yl′

)
, l = 1, . . . , N − 1.

Equation (112) can be evaluated using equa-
tions (102, 103),

Rβ(z)Xα =



1
�

cγαβ

z +Ωγ
Xγ , γ = α± β ∈ R

1
�

N−1∑
l=1

clα,−α

z +Ωl
Yl, β = −α

0, otherwise.

(113)

Similarly, we get from equations (111, 102, 107)

Rβ(z)Yl =
1
�

1
z1 + iL

[Yl , Xβ ]

=
1
�

cβlβ
z +Ωβ

Xβ , l = 1, . . . , N − 1. (114)

With the decompositions (109) and (110) the recursion
relations (84) become

D k
n =

∑
β∈R

fβRβ(kω)D k+1
n−1 + f�

−βRβ(kω)D k−1
n−1 . (115)

For n ≥ 1 the operators D k
n can be expressed in terms of

the operators Xα, α ∈ R and Yl, l = 1, . . . , N − 1,

D k
n =

∑
β∈R

xk
nβXβ +

N−1∑
l=1

yk
nlYl. (116)

From the first recursion step and equation (108), we obtain

yk
1l = 0, l = 1, . . . , N, k = −km, . . . , km (117)

and

xk
1α =


1
�

f�
−α p0α

ω +Ωα
, k = 1, α ∈ R

1
�

fα p0α

−ω +Ωα
, k = −1, α ∈ R

0 otherwise.

(118)

For convenience, we now combine the coefficients xk
nα, α ∈

R and yk
nl, l = 1, . . . , N−1 into column vectors xk

n and yk
n.

After insertion of the decomposition (116) into the recur-
sion relations (115) and making use of equations (88, 106)
we then get for n ≥ 2,(

xk
n

yk
n

)
=

(
Ak

+(ω) Bk
+(ω)

Ck
+(ω) 0

)(
xk+1

n−1

yk+1
n−1

)

+

(
Ak

−(ω) Bk
−(ω)

Ck−(ω) 0

)(
xk−1

n−1

yk−1
n−1

)
.

(119)

The matrix elements of the matrices Ak
±(ω), Bk

±(ω)
and Ck

±(ω) are obtained from equations (112, 113, 114).
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Making also use of the definition (92) we get

(
Ak

+(ω)
)

αβ
=


1
�

1
kω +Ωα

(fβ−α − fα−β) , α− β ∈ R
0 otherwise

(
Ak

−(ω)
)

αβ
=


1
�

1
kω +Ωα

(
f�

α−β − f�
β−α

)
, α− β ∈ R

0 otherwise

(
Bk

+(ω)
)
αl

=
fα

�

cαlα
kω +Ωα

,

(
Bk

−(ω)
)
αl

=
f�
−α

�

cαlα
kω +Ωα

, (120)

(
Ck

+(ω)
)
lα

=
f−α

�

clα,−α

kω +Ωl
,

(
Ck

−(ω)
)
lα

=
f�

α

�

clα,−α

kω +Ωl

for α, β ∈ R and l = 1, . . . , N − 1. From equa-
tions (119, 120) we expect resonant behavior of the popu-
lations and the coherences at frequencies ω = ωα/k, k =
±1,±2, . . ..

The population terms yk
n are generated by the coher-

ence terms xk+1
n−1 and xk−1

n−1,

yk
n = Ck

+(ω)xk+1
n−1 + Ck

−(ω)xk−1
n−1. (121)

From equation (119) and using the above identity we ob-
tain a recursion relation for the coherences

xk
n = Ak

+(ω)xk+1
n−1 +Bk

+(ω)Ck+1
+ (ω)xk+2

n−2

+Bk
+(ω)Ck+1

− (ω)xk
n−2 +Ak

−(ω)xk−1
n−1

+Bk
−(ω)Ck−1

+ (ω)xk
n−2 +Bk

−(ω)Ck−1
− (ω)xk−2

n−2,
(122)

where the starting term is given by equation (118). In
terms of the column vectors

xn =

 xkm
n
...

x−km
n

 (123)

the solutions of equation (122) may be written in the com-
pact form

(
xn+1

xn

)
=
(
U V
1 0

)n(
x1

0

)
n = 0, 1, 2, . . . ,

where the matrices U and V are composed of the block-
submatrices Ukk′ and Vkk′ defined by

Ukk′ =Ak
+(ω) δk′k+1 +Ak

−(ω) δk′k−1

Vkk′ =Bk
+(ω)Ck+1

+ (ω) δk′k+2

+ Bk
+(ω)Ck+1

− (ω) δk′k

+ Bk
−(ω)Ck−1

+ (ω) δk′k

+ Bk
−(ω)Ck−1

− (ω) δk′k−2, |k|, |k′| ≤ km.

The perturbation series for the coherences can be summed
up explicitly. Putting

Z =
(
U V
1 0

)
(124)

we first introduce the sum

Gm =
m∑

n=1

Zn,

which accounts for the contributions up to m-th order in
the perturbation. Then, using the identity

(1 − Z)(Z + Z2 + . . .+ Zm) = Z − Zm+1

we obtain the relation

(1 − Z)Gm = Z − Zm+1.

For sufficiently small perturbations we have

Zm → 0 for m→ ∞. (125)

In this case the matrix (1 − Z) can be inverted, so that

G ≡ lim
m→∞Gm

= (1 − Z)−1
Z − lim

m→∞ (1 − Z)−1
Zm+1

= (1 − Z)−1
Z.

From the definition (124) we obtain immediately

(1 − Z)−1 =
(
W WV
W 1 +WV

)
with

W = (1 − U − V )−1
,

and consequently

G =
(
W (U + V ) WV

1 +W (U + V ) WV

)
,

G

(
x1

0

)
=
(

W (U + V )x1

(1 +W (U + V )) x1

)
.
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The last relation allows us to write the general solution
for the coefficients defining the coherences in the compact
form

x =
∞∑

n=1

xn

= x1 + (1 − U − V )−1(U + V )x1

= (1 − (U + V ))−1 x1. (126)

The start vector x1 specifying the coherences to first order
is given by equation (118).

The coefficients corresponding to the populations are
obtained from equation (121). We find

y = y0 +
∞∑

n=2

yn

= y0 + C̃ (1 − (U + V ))−1 x1 (127)

with

C̃kk′ = Ck
+(ω) δk′k+1 + Ck

−(ω) δk′k−1, |k|, |k′| ≤ km.

The column vectors x and y determine the stationary solu-
tion for the density matrix, which is given by equation (73)
for λ = 1. In order to see this, let us recall that the vec-
tors xn and yn in equations (126, 127) are composed of
the coefficients xk

nα and yk
nl, respectively (see Eq. (123)).

According to equations (116, 76), they define the nth or-
der contributions Dn(t). Summation over all orders yields
the solution (73).

In order to illustrate the above results, we con-
sider a two-level system. In this case, the Γ coefficients
describing the effect of the bath are Γ 11

11 = −Γ 11
22 ,

Γ 22
22 = −Γ 22

11 , and Γ 12
12 = Γ 21

21
�. Assuming a thermal bath

we further have Γ 11
22 /Γ

22
11 = exp((E1 − E2)/kBT ). The

coupling to the bath for a given temperature may thus be
described by the three free parameters Γ 11

11 , Γ 22
22 and Γ 12

12 .
The coefficients fα determining the time-periodic pertur-
bation (96) are chosen as f1 = f2 ≡ f ∈ R. It can easily be
seen that in a two-level system the matrices Ak

−(ω), Ak
+(ω)

and therefore the matrix U vanish. This is a direct con-
sequence of the fact that there exist no α, β ∈ R with
α− β ∈ R. This feature implies that the coefficients

yk =
∞∑

n=1

yk
n

become strictly zero for k = ±1,±3,±5, . . .. The remain-
ing coefficients yk, k = 0,±2,±4, . . . show the expected
resonant behavior near ω = ω0/q, q = 1, 3, 5, . . . with
ω0 = (E2−E1)/�. An example is given in Figure 1, where
we present the frequency dependence of the absolute value
of the coefficients

yk =
∞∑

n=1

yk
n

for k = 4. We find two well-resolved resonances corre-
sponding to q = 1, 3. Similar resonance behavior at the

Fig. 1. Absolute value of y4 representing the fourth-order har-
monics of the population as a function of the frequency ω of the
external perturbation for a two-level system. The frequency is
measured in units of ω0 = (E2 − E1)/�. The response

∣∣y4
∣∣ is

normalized to its maximum value at ω = 1/3ω0. The calculated
curve was obtained for the parameters Γ 11

11 = −2×10−7, Γ 12
12 =

−2× 10−3, kBT = (E2 −E1)/10, and f = 5 × 10−4 (see text).

same frequencies is found for the coefficients

xk =
∞∑

n=1

xk
n,

which determine the coherences, the essential difference
being that, contrary to the yk coefficients, the coefficients
xk vanish for k = ±2,±4,±6 . . ., but they are nonzero for
k = ±1,±3,±5 . . .

For large amplitudes fα of the external perturbation
the condition (125) can no longer be satisfied, and the
series (126) and (127) will diverge. Such a behavior indi-
cates that the system is unstable under the influence of the
external field. The convergence criterion can be expressed
more precisely in terms of the norm of the matrix Z, which
is defined as

||Z|| = sup
x

|Zx|, ∀x with |x| = 1.

This norm depends on the parameters characterizing the
external perturbation. Multiplying the perturbation term
Hext by a factor λ, it is proportional to λ. The convergence
of the perturbation series and, correspondingly, the sta-
bility of the subsystem A under the influence of the time-
periodic perturbation is ensured as long as lim

km→∞
||Z|| <

1. Following the above defined trajectories in the param-
eter space starting from arbitrary initial fα values and
frequencies ω, we get all possible stationary solutions.

6 Conclusion

We have derived the master equations describing the evo-
lution of a statistical ensemble of quantum systems weakly
coupled to a bath under the most general conditions. Our
goal was to achieve a transparent but nevertheless rig-
orous understanding of the evolution of bathed systems,
without making any premature reference to a specific
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physical context. Furthermore, we have discussed the non-
linear response of the bathed system to an external time-
periodic perturbation. In contrast with current standard
treatments, we have taken care to avoid any unnecessarily
restrictive hypotheses. In particular, the present approach
does not rely on the assumption of a bath at “thermal”
equilibrium. Thus, the derived Redfield equations (18),
the coarse-grained master equations (21) and the rela-
tions (23) to (33) for the coefficients Γ a′

1a′
2

a1a2 hold for ar-
bitrary statistical equilibrium states of the bath.

The present approach reveals the physical concepts,
which are fundamental for any quantum-statistical ap-
proach. The most salient feature of open systems embed-
ded in their statistical environment is the gradual loss
of memory, which is a necessary prerequisite for any re-
producible experiment. The memory loss in the bathed
system is introduced via the postulated finite memory of
the bath that is quantified by the finite correlation time
τcorr
B . This correlation time τcorr

B enters the definition of
the correlation functions cαβ(τ) (9). The introduction of
τcorr
B enables us to restrict the subsequent discussion to the

evolution of finite subsystems A and B. The approxima-
tion (6), consisting of the replacement of the true history
by a fictitious one, is the crucial starting point for the sub-
sequent theoretical development. It allows us to get rid of
the irrelevant part of the history of the considered sys-
tem. The properties of the environment are accounted for
via the parameters characterizing the finite bath subsys-
tem B, i.e., the correlation functions (9) and the statistical
equilibrium state ρ0

B. The central role of the correlation
functions is clearly revealed by our approach. They de-
termine the functions χαβ(ω) and χ̄αβ(ω) defined by the
Fourier transforms (32) and (33), which in turn determine
the coefficients Γ a′

1a′
2

a1a2 (see Eqs. (23) to (33)) in the master
equations (20, 21). The functions χ′

αβ(ω) and χ′′
αβ(ω) de-

fined in equations (51, 52) are also directly connected with
the correlation functions. These functions are useful to
separate the dissipative part in the evolution of energy of
the bathed system from the part corresponding to energy
fluctuations that are due to the interaction of the bathed
system with the bath. We derive the so-called fluctuation-
dissipation theorem which states that at equilibrium both
parts cancel each other. In the particular case of a bath
at thermal equilibrium, the functions χ′

αβ(ω) and χ′′
αβ(ω)

are related by equation (55). The correlation functions
characterizing the bath system determine also the func-
tions κret

αβ (ω) and κadv
αβ (ω) describing its linear response,

which are defined in equations (61, 63). The respective
relations are expressed in terms of the Fourier transforms
equations (52, 62), which take care of the causality con-
dition. The Kramers-Kronig relations for both linear re-
sponse functions, which are discussed in Section 4, are a
direct consequence of the definitions (32), (33) and (59).

Most experiments investigate the response of a bathed
system to an external perturbation. This situation is il-
lustrated in Section 5, where we consider a time-periodic
perturbation. The bathed system is characterized by the
coarse-grained density matrix D(t). Its evolution to any

order in the external perturbation is described using Flo-
quet’s theorem. The decomposition (116) of the density
matrix D(t) in the operator basis provided by the oper-
ators Xα, α ∈ R and Yl, l = 1, . . . , N − 1, which are de-
fined in equations (86, 103, 104, 105), respectively, allows
us to formulate an explicit solution. The recursion rela-
tions (119) for the coherences and the populations can be
solved using simple matrix operations. The solutions for
the coherences are provided by equations (126, 118). The
coherences acting as source terms for the populations, the
latter are found from equation (127).

The master equations (21) cover a vast variety of ex-
perimental situations, ranging from optical absorption ex-
periments in atoms, molecules, quantum dot systems or
solids, to the dynamical behavior of nuclear spins. For an
adequate treatment it is of course crucial to make a phys-
ically meaningful separation of the bathed system and the
bath. The separation demands a profound analysis of the
considered system. From the discussion in Section 2.4 it
becomes clear that the typical time scales corresponding
to the bathed system and the bath system must be suffi-
ciently different. For example, considering classical optical
absorption experiments on solids, it is usually adequate to
associate the bath system with the vibrational degrees of
freedoms of the nuclei, the phonons. The same decomposi-
tion may be applied for the discussion of most transport ac
experiments. For studies of the relaxation dynamics of the
nuclear spins in solids by NMR experiments, it is reason-
able to associate the bath with the electronic subsystem.

This work was partly supported by the Swiss National Sci-
ence Foundation under Grant Nos. 2000-53832.98 and 2000-
058972.99.

Appendix A: Evolution of the subsystem
A under the coupling to the bath B

After integration of equation (5) and iteration we obtain

ρI(t) = ρI(t0) +
i

�

∫ t

t0

dt′
[
ρI(t′) , HI

int(t
′)
]

= ρI(t0) +
i

�

∫ t

t0

dt′
[
ρI(t0) , HI

int(t
′)
]

+
(
i

�

)2∫ t

t0

dt′
∫ t′

t0

dt′′
[[
ρI(t0) , HI

int(t
′′)
]
, HI

int(t
′)
]

+ ... (A.1)

The density matrix ρI(t) can always be written

ρI(t) = ρI
A(t) ⊗ ρI

B(t) + ηI
AB(t). (A.2)

According to our assumptions, the correlation term ηI
AB(t)

is generated by first- and higher-order contributions of
the interaction Hamiltonian HI

int. Thus, it gives rise to a
second-order contribution in the first integral of the devel-
opment in equation (A.1). The contributions of ηI

AB(t) to
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the last term containing the double integral are at least of
third order and will be neglected in the following. Per-
forming the partial-trace operation TrB on the expres-
sion (A.1) for ρI(t) and keeping only contributions up to
second-order, we then get for the density matrix of the
subsystem A

ρI
A(t) = ρI

A(t0) +
i

�

∫ t

t0

dt′
∑

α

[
ρI

A(t0) , AI
α(t′)

]
bα(t′)

+
i

�

∫ t

t0

dt′ TrB
( [
ηI

AB(t0) , HI
int(t

′)
])

+
(
i

�

)2∫ t

t0

dt′
∫ t′

t0

dt′′
∑
α,β

[
ρI

A(t0)AI
β(t′′) , AI

α(t′)
]
bβα(t′′, t′)�

− [
AI

β(t′′)ρI
A(t0) , AI

α(t′)
]
bαβ(t′, t′′)

+ . . . .
(A.3)

The coefficients bα(t′) and bαβ(t′, t′′) are defined by

bα(t′) = Tr
(
ρI

B(t0)BI
α(t′)

)
(A.4)

and

bαβ(t′, t′′) = Tr
(
ρI

B(t0)BI
α(t′)BI

β(t′′)
)
. (A.5)

Exchanging the role of A and B, we obtain a similar re-
lation for ρI

B(t). The first-order contribution to the corre-
lation term ηI

AB(t) defined by equation (A.2) can then be
determined from equation (A.3) and its analog for ρI

B(t).
We get

ηI
AB(t) = ρI(t) − ρI

A(t) ⊗ ρI
B(t) 
 ηI

AB(t0)

+
i

�

∫ t

t0

dt′
[
ρI

A(t0) ⊗ ρI
B(t0),

∑
α

(
AI

α(t′)

− aα(t′)1A

)⊗ (BI
α(t′) − bα(t′)1B

) ]
,

where aα(t′) is the counterpart of bα(t′). Assuming
ηI

AB(t00) = 0 for t00 < t0, we have

ηI
AB(t0) 
 i

�

∫ t0

t00

dt′
[
ρI

A(t0) ⊗ ρI
B(t0),

∑
α

(
AI

α(t′)

− aα(t′)1A

)⊗ (BI
α(t′) − bα(t′)1B

) ]
.

Thus, the third term on the right-hand side of the expres-
sion (A.3) for ρI

A(t) becomes

i

�

∫ t

t0

dt′ TrB
( [
ηI

AB(t0) , HI
int(t

′)
])

=

(
i

�

)2 ∫ t

t0

dt′
∑
α

∫ t0

t00

dt′′
∑

β

( [
ρI

A(t0)AI
β(t′′) , AI

α(t′)
]

× (bαβ(t′, t′′)∗ − bα(t′)bβ(t′′))

− [
AI

β(t′′)ρI
A(t0) , AI

α(t′)
]
(bαβ(t′, t′′) − bα(t′)bβ(t′′))

− [
ρI

A(t0) , AI
α(t′)

]
aβ(t′′) (bαβ(t′, t′′)∗ − bαβ(t′, t′′))

)
.

Insertion into equation (A.3) yields

ρI
A(t) = ρI

A(t0) +
i

�

∫ t

t0

dt′
∑
α

[
ρI

A(t0) , AI
α(t′)

]
bα(t′)

+
(
i

�

)2 ∫ t

t0

dt′
∑

α

∫ t′

too

dt′′
∑

β

( [
ρI

A(t0)AI
β(t′′) , AI

α(t′)
]

× bαβ(t′, t′′)∗ − [
AI

β(t′′)ρI
A(t0) , AI

α(t′)
]
bαβ(t′, t′′)

)
− i

�

∫ t

t0

dt′
∑
α

[
ρI

A(t0) , AI
α(t′)

]
× i

�

∫ t0

t00

dt′′
∑

β

(bαβ(t′, t′′)∗ − bαβ(t′, t′′)) aβ(t′′)

−
(
i

�

)2 ∫ t

t0

dt′
∑

α

∫ t0

t00

dt′′
∑

β

[ [
ρI

A(t0) , AI
β(t′′)

]
,

AI
α(t′)

]
bβ(t′′)bα(t′).

(A.6)
Note that the whole influence of the subsystem B on the
subsystem A is carried solely by the functions bα(t′) and
bαβ(t′, t′′), and that these functions depend only on the
initial statistical state ρI

B(t0) of the subsystem B. Clearly,
the roles of the subsystems A and B are interchangeable.
Accordingly, a relation similar to equation (A.6) holds also
for ρI

B(t).
Let us now consider the situation where the subsystem

B behaves like a bath. Its fluctuations around statistical
equilibrium are generated by the dynamical coupling with
the subsystem A. In the Schrödinger picture, the density
matrix of the subsystem B may then be written

ρB(t) = ρ0
B + δρB(t)

with [
ρ0

B , HB

]
= 0.

The fluctuation term δρB(t) may be associated with the
first- and higher-order contributions. We introduce the
mean values

b0α ≡ Tr
(
ρ0

BBα

)
to rewrite the total Hamiltonian as

H =

(
HA +

∑
α

Aαb
0
α

)
⊗ 1B + 1A ⊗HB

+
∑

α

Aα ⊗ (Bα − b0α1B

)
.

This corresponds to the replacements (7). Obviously, after
these replacement the mean values b0α vanish and the co-
efficients bα(t′) in equation (A.6) depend at least to first
order on the interaction. We see immediately that the last
term in equation (A.6) vanishes, if we restrict ourselves to
terms up to second order in the interaction. The second
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term in equation (A.6) depends on the coefficients bα(t′).
In order to calculate bα(t′) we start from the equivalent
of equation (A.6) for the subsystem B evaluated to first
order. We then get

ρI
B(t0) = ρ0

B +
i

�

∫ t0

too

dt′′
∑

β

[
ρI

B(t0) , BI
β(t′′)

]
aβ(t′′).

Inserting the above expression into equation (A.4), we ob-
tain

bα(t′) =
i

�

∫ t0

too

dt′′
∑

β

Tr
( [
ρI

B(t0) , BI
β(t′′)

]
BI

α(t′)
)
aβ(t′′)

=
i

�

∑
β

∫ t0

too

dt′′ (bαβ(t′, t′′)∗ − bαβ(t′, t′′)) aβ(t′′)

(A.7)
Replacing bα(t′) in the second term in equation (A.6) with
the above expression, we find that this term and the fourth
term cancel each other.

The resulting expression ρI
A(t) depends on the func-

tions bαβ(t′, t′′) defined in equation (A.5). Restricting our-
selves to the second-order contributions to ρI

A(t) with re-
spect to the modified interaction term, we can replace
ρI

B(t0) by ρ0
B, i.e., we approximate

bαβ(t′, t′′) 
 cαβ(t′ − t′′),

where

cαβ(t′ − t′′) = cβα(t′′ − t′)∗ ≡ Tr
(
ρ0

BB
I
α(t′)BI

β(t′′)
)

≡ Tr
(
ρ0

Be
iHB(t′−t′′)/�Bαe

−iHB(t′−t′′)/�Bβ

)
are the correlation functions of the observables BI

α(t′) and
BI

β(t′′) for the subsystem B in the statistical equilibrium
described by the density matrix ρ0

B. This proves equa-
tion (8).
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